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Abstract

The logical formalism is well adapted to model large biological networks, for

which detailed kinetic data are scarce. This tutorial focuses on a well-established

qualitative (logical) framework for the modelling of regulatory networks. Re-

lying on GINsim, a software implementing this logical formalism, we guide the

reader step by step towards the definition and the analysis of a simple model of

the mammalian p53-Mdm2 network.
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1 Introduction

The logical formalism is becoming increasingly popular to model cellular net-

works [1]. Here, we focus on the framework developed by René Thomas and

colleagues, which includes the use of multilevel variables when functionally jus-

tified, along with sophisticate logical rules or parameters [2, 3]. This approach

has been applied to the study of a wide range of networks controlling, for ex-

ample, the lysis-lysogeny decision of the bacteriophage λ [4], the specification

of flower organs in arabidopsis [5], the segmentation of drosophila embryo [6–8],

the formation of compartment in drosophila imaginal disks [9, 10], drosophila

egg shell patterning [11], cell cycle in mammals and yeast [12, 13], the differ-

entiation of T-helper lymphocytes [14, 15], neural differentiation [16], as well

as cell fate decisions in tumors [17–19], etc. Our goal here is to introduce this

modelling framework and the use of the current version of the software GINsim,

which implements this formalism. The chapter is organised as follows. Section

2 provides practical information on GINsim and file formats. General guidelines

to define and analyse logical models are given in Section 3. Next, in Section 4,

we proceed with the construction and analysis of a logical model for a network

centered around p53 and Mdm2 proteins and their role in DNA damage repair.

The chapter ends with an outlook section.
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2 Material

2.1 GINsim

GINsim software supports the definition, the simulation and the analysis of

regulatory graphs, based on the (multilevel) logical formalism. Developed in

Java, GINsim is platform-independent and only requires a recent Java Virtual

Machine.

GINsim is freely available for academic users and is available from the GIN-

sim website (http://ginsim.org), along with documentation and a model

repository. We will use the development release GINsim-2.9.3 for this tuto-

rial. To get started with GINsim, download the Java ARchive (JAR file), from

the download section of GINsim website. To launch GINsim, double-click on the

file icon or use the command: java -jar GINsim-]version.jar (java options

are available, e.g. to increase the size of RAM to be used).

You are now ready to define a logical regulatory graph, or to open a pre-

existing logical model and analyse its dynamical properties.

2.2 File formats

To store logical regulatory graphs and state transition graphs, including graph-

ical attributes, GINsim relies on a specific XML file format called GINML. In

addition to these flat files (with extension .ginml), ZIP archives can be gen-

erated (extension .zginml), including files containing definitions or mutants,

initial states, and other simulation parameters (files mutant, initialState,

reg2dyn parameters, respectively), in addition to the flat file containing the
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model (file regulatoryGraph.ginml).

GINsim further supplies facilities for export in a number of file formats,

including the new SBML qual format [20] (see Note 1).

3 Logical regulatory graph definition and analysis

In this section, we introduce the different steps to follow to define a logical

model of a regulatory network and to analyse its dynamical properties. These

definitions are applied to the p53-Mdm2 network in the Section 4.

3.1 Defining a logical regulatory graph

The first step in the delineation of a logical model of a regulatory network is

the definition of a logical regulatory graph, where the nodes represent regula-

tory components (genes, proteins, etc.), whereas the arcs represent regulatory

interactions.

1. Define a set of regulatory components {g0, . . . , gn}. To each component

gi (i ∈ {0, . . . n}), associate a maximal level maxi, defining a range of

functional qualitative levels {0, . . .maxi} for gi.

2. Define a set of arcs between nodes. An arc represents a regulatory effect

of its source node onto its target node. For each arc, assign a threshold

θ ∈ {1, . . .maxi} (maxi being the maximal level of gi, the source of the

arc). This threshold indicates the level of gi at which the regulatory

effect on gj , the target of the interaction, occurs. Further, assign a sign in
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{+,−, ?,±}, where + denotes an activation, − an inhibition, ? an unknown

sign, and ± a dual interaction (i.e., an interaction with positive or negative

effect depending on the presence of cofactors).

When the maximal levelmaxi of a node gi is higher than 1, an outgoing arc

pointing from gi towards a node gj may be composed of several interactions

(i.e., there is a multi-arc from gi to gj), denoting situations where the

regulatory effect of gi on gj is different depending on the level of gi (see

Note 2).

3. In addition, one must define the rules governing the evolution of the reg-

ulatory component levels. These rules can be specified in the form of

Boolean formulae or of logical parameters (see Note 3 for the definitions

of logical parameters, basal levels and default values in GINsim). Here,

we will use Boolean formulae (i.e. connecting literals and the Boolean op-

erators NOT, AND, and OR) to specify the conditions on the regulators

enabling the activation of each component.

3.2 Dynamical simulations

The dynamical behaviour of a logical regulatory graph is also defined as a graph,

called state transition graph. In a state transition graph, each node represents

a state of the model, i.e. a vector s with definite component levels (si, the ith

component of s, is the level of gi in state s). The arcs represent transitions

between states. One core function of GINsim is the automatic construction of

this graph based on the predefined logical regulatory graph and rules. To use
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this function judiciously, it is important to understand the principles underlying

this construction, which are outlined hereafter. Afterwards, several options to

analyse the dynamics of logical regulatory graphs are presented.

A each state s, a specific combination of interactions are active (i.e. those

for which the source levels are above the corresponding thresholds). These ac-

tive interactions may enforce changes of component levels, depending on the

logical rules. For each component gi, if its current level si is different from the

corresponding target value in state s, there is a call to update the level of gi

towards this target level. Several such components can be called for update

at a given state. Two main strategies are then commonly used. Under syn-

chronous updating, all concerned components change their levels simultaneously

in a unique transition towards a single next state. In contrast, asynchronous

updating generates a successor state for each component called for updating. If

a state involves k updating calls, it will thus have k successors, and each suc-

cessor state will differ from it by the level of a single component (see Note 4 for

additional explanations). The introduction of priority classes allows to define

more subtle updating schedules (see Note 5 and [12]).

For models of moderate size, one can choose to generate the complete state

transition graph,considering all possible initial states. Alternatively, one can

build a state transition graph for specific initial state(s).

In such state transition graphs, it is relatively easy to determine the stable

states, defined as nodes with no outgoing arcs, as well as more complex attrac-

tors, defined as terminal maximal strongly connected components, denoting an
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oscillatory behaviour.

Beyond the identification of stable states and of more complex attractors,

we are particularly interested in knowing which attractors can be reached from

specific initial conditions. Such questions can be addressed by verifying the

existence of pathway(s) (i.e. sequences of transitions) from initial states to

attractor states.

3.3 Strongly Connected Components Graph

To ease the analysis of the dynamics of a model, one can compress the state

transition graphs into a graph of Strongly Connected Components (SCC). The

SCC graph is an acyclic graph generated on the basis of the original one, such

that each strongly connected component of the original graph is compressed in a

single node of the SCC graph. Interestingly, the resulting SCC graph preserves

the reachability properties of the original graph.

3.4 Hierarchical Transition Graph

In many situations, the SCC graph results only in a moderate compression of

STG. To augment this compression and ease the interpretation of the dynamics,

we have recently introduced another acyclic graph, called Hierarchical Transi-

tion Graph (HTG), which further merges linear chains of states (in addition to

cycles) into single nodes [21]. The resulting graph preserves stable states and

other important dynamical properties, but do not fully conserve reachability

properties.
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3.5 Circuit analysis

Regulatory circuits are responsible for the emergence of dynamical properties,

such as multistationarity or sustained oscillations (see Note 6). In this respect,

GINsim implements specific algorithms to:

1. Identify all the circuits of a regulatory graph (possibly considering con-

straints such as maximum length, consideration or exclusion of some com-

ponents, etc.).

2. Determine the functionality contexts of these circuits, using a computa-

tional method presented in [22].

3.6 Reduction of logical models

When models increase in size, it become quickly difficult to cope with the size

of the corresponding STG. One solution consists in simplifying or reducing the

model before simulation. In this respect, GINsim implements a method to re-

duce a model on the fly, i.e. just before the simulation. The modeler can specify

the nodes to be reduced, and the logical rules associated with their targets are

then recomputed taking into account the (indirect) effects of their regulators.

This construction of reduced models preserves crucial dynamical properties of

the original model, including stable states and more complex attractors [23].

3.7 Definition of perturbations

Common perturbations are easily specified within the logical framework:
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• A gene knock-down is specified by driving and constraining the level of

the corresponding regulatory node to the value 0.

• Ectopic expression is specified by driving and constraining the level of the

corresponding regulatory component to its highest value (or possibly to a

range of values greater than zero, in the case of a multi-valued node).

• Multiple perturbations can be defined by combining several such con-

straints.

• More subtle perturbations can be defined by more sophisticate rewriting

of component rules (i.e. to change the effect of a given regulatory arc).

4 Application to the p53-Mdm2 network

Here, we illustrate the use of GINsim through the construction and the analysis

of a logical model for the p53-Mdm2 regulatory network.

4.1 p53-mdm2 network in mammals

The transcriptional factor p53 plays an essential role in the control of cell pro-

liferation in mammals by regulating a large number of genes involved notably

in growth arrest, DNA repair, or apoptosis. Its level is tightly regulated by the

ubiquitin ligase Mdm2. More precisely, nuclear Mdm2 down-regulates the level

of active p53, both by accelerating p53 degradation through ubiquitination and

by blocking the transcriptional activity of p53. In return, p53 activates Mdm2

transcription and down-regulates the level of nuclear Mdm2 by inhibiting Mdm2
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nuclear translocation through inactivation of the kinase Akt. Finally, high levels

of p53 promote damage repair by inducing the synthesis of DNA repair proteins.

Given its key role in DNA repair and cell fate control, this network has

been modeled by various groups using different formalisms, including ordinary

differential equations [24], stochastic models [25], as well as the logical frame-

work [26].

Here, we rely on the logical model presented in [26], which encompasses

the following components: the protein p53; the ubiquitin ligase Mdm2 in the

cytoplasm; the ubiquitin ligase Mdm2 in the nucleus; and DNA damage (see

Figure 1).

4.2 Defining the logical regulatory graph

The set of instructions listed below defines a logical model, which can be saved

in the GINML format as described in Section 2.2. To edit a graph, use the

toolbox located just on the top of the main graphic window (below the scrolling

menus). Passing slowly with the mouse on each of the editing tools pops a

message explaining what this tool does. The ”E” tool enables further edition

of a pre-existing node or arc. The garbage can enables the deletion of a pre-

existing arc or tool. Clicking once on one of the remaining tools activates it and

enables the drawing of one node or one arc. Clicking twice on one of these tools

will enable the drawing of several nodes or arcs without clicking again on the

relevant tool.

1. Add the four nodes corresponding to p53, Mdm2cyt, Mdm2nuc and DNAdam,
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specifying their names and maximal levels as defined in Table 1. The eas-

iest way is to first double-click on the component addition tool and draw

the four nodes, and then double-click on the Edition (”E”) tool to change

their names and maximal levels. Note that a node can also be ticked as

input, but this is not relevant here, as all nodes are regulated by at least

one other node of the network. Figure 1 illustrates this step.

2. Add the arcs between the nodes as defined in Figure 1, specifying their

associated signs and thresholds, as list in the Table 2. Figure 2 illustrates

this step. Note 2 provides further information about the possibility to

associate different signs and value intervals with one arc.

3. For each node (select the node to edit it), specify the logical rules listed

in Table 3. For this, you need to select a node and then Formulae in

the scrolling menu at the bottom left of the GINsim window. Figure 3

illustrates this step.

Alternatively, one can define logical parameters using the graphical menu,

after selecting Parameters with the aforementioned scrolling menu. This

implies the selection of a relevant set of interactions and clicking on the

left arrow to add the corresponding parameter in the parameter list (see

Note 3 for default values).

The third option of this menu enables the user to enter textual annotations

(bottom-right panel) or hyperlinks to relevant database entries (bottom-

middle panel).
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Note that the definition of adequate logical rules or parameters is necessary

to ensure the desired effects of each interaction on the target nodes.

4. Change the graphical appearance of nodes and arcs of the graph at your

convenience. For this, select the object, node or arc, and the Style tab.

You can either change the default style or define your own styles for both

graph nodes and arcs.

5. Selecting the Modelling Attributes tab, with no object selected in the

main window, verify that the order of the variables is: p53, Mdm2cyt,

Mdm2nuc, DNAdam. if this is not the case, modify the component order

accordingly, using the arrows close to the component list at the bottom-left

of the tab.

6. Save your model using the Save option of File menu.

4.3 Dynamical analysis

The simulation of a logical model defined as described above results in a state

transition graph (which can be saved as a GINML file). The simulation settings

(initial states, updating schemes and perturbations) can also be saved in the

archive zginml (cf. Section 2.2).

Let us first consider the construction of the asynchronous dynamics:

1. Select Run Simulation in the Tools menu. This opens a panel enabling

the construction of the dynamics.
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The two Configure buttons and the two neighboring scrolling menus on

the top enable the definition and the selection of model perturbations and

reductions (see below). The bottom left window enables the definition

and the recording of different parameter settings, which greatly facilitate

the reproduction of results.

Regarding the construction strategy, a scrolling menu enables the choice

between the generation of a State Transition Graph (STG), its compres-

sion into a Strongly Connected Components (SCC), or its further compres-

sion into a Hierarchical Transition Graph (HTG). Using another scrolling

menu, the user can chose between synchronous or asynchronous updating,

or define or select predefined priority classes (see Note 5).

Before clicking the Run button, verify that the default settings are as spec-

ified in Figure 4: asynchronous updating, no priority, no mutant selected,

no initial state specified.

2. Display the state transition graph obtained (Figure 5). In fact, when the

STG is small, it is automatically displayed. Note that the scrolling menus

propose different options, including path search functions, etc.

In the default level layout, the nodes with no incoming arc are placed at the

top, whereas the nodes with no outgoing arc (stable states) are placed at

the bottom. Stable states are further emphasised with different graphical

attributes (here an ellipse). In this new window, you can re-arrange the

nodes, change the graphical settings (clicking on the Style tap), and check
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outgoing transitions by selecting a state, as shown in Figure 5.

The state 0100 (i.e. with Mdm2cyt ON and the other three components

OFF) is selected, from which three unitary transitions are enabled by the

rules: increase of Mdm2nuc from 0 to 1, decrease of Mdm2cyt from 1 to 0,

and increase of p53 from 0 to 1. The selected state and its three successor

states are shown in the bottom panel. It is possible to follow a transition

path by clicking on a little rightward arrow on the left, which switches the

selection to the corresponding state. When the selected state also connects

to predecessors states, these are also shown, preceded by leftward arrows.

Note that we have obtained a unique stable state, (0010) (following the or-

der defined above, this vector states that p53=0, Mdm2cyt=0, Mdm2nuc=1

and DNAdam=0), which corresponds to the rest state (low level of p53

and no DNA damage).

3. For comparison, let’s build the STG using the synchronous updating strat-

egy (selecting Synchronous with the scrolling menu in the Priority Class

selection area shown in Figure 4. The resulting STG is shown in in Fig-

ure 6 Naturally, the stable state (0010) is preserved (bottom left) but we

now obtain two cyclic attractors (bottom middle and right). Single and

multiple transitions are denoted by solid and dotted arcs, respectively. For

example, the selected state 0101 is leading to state 1011 through simulta-

neous changes of p53, Mdm2cyt and Mdm2nuc, as shown in the bottom

panel (blue cells). Such behavior is not realistic from a biological point of

view!
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4. In the Subsection 3.3, we have seen that the STG can be compressed to

better visualize its structure. A first compression consists in building the

graph of strongly connected components (SCC). This can been done after

the generation of the STG, by selecting the Construct SCC Graph function

from the Tools scrolling menu.

Alternatively, one can directly generate the SCC graph by selecting the

corresponding option with the Construction Strategy scrolling menu. Fig-

ure 7 shows the resulting SCC graph, with all other simulation parameters

left (in particular with asynchronous updating) identical to those shown

in Figure 4.

Now, we clearly see that there are two transient cyclic components, de-

noted by ct, followed by # and the number of states included in the cycle.

The first cycle (ct#9) corresponds to large amplitude p53 oscillations in

the presence of DNAdam (with p53 oscillating between the levels 0 and 2).

The second cycle (ct#6) corresponds to smaller amplitude p53 oscillations

in the absence of DNAdam (with p53 oscillating between the levels 1 and

2). In both cycles, Mdm2cyt and Mdm2nuc also oscillate.

5. As mentioned in the Subsection 3.4, we can further compress the dynam-

ics using the Hierarchical Transition Graph (HTG) representation. This

is achieved by selecting the corresponding option with the Construction

Strategy scrolling menu. Figure 8 shows the resulting HTG, with all other

simulation parameters left identical as shown in Figure 4. Although rel-

atively modest in this case (from eleven nodes for the SCC graph to six
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nodes for the HTG), this compression can be much more impressive in

cases where we have limited oscillations and many alternative dynamical

pathways (see e.g. [19, 21]).

Further analyses can be performed:

5. Using the Stable States option of the Tools menu of the main window,

verify that the unique stable state of this model is indeed (0010) (see

Figure 9); this calculation bypasses the construction of the STG, which is

particularly useful for large models.

6. Define a mutant corresponding to an ectopic expression of DNAdam (see

Figure 10). Such perturbations can be encoded before the computation of

stable states or of a state transition graph. Verify that the resting stable

state (0010) is not stable anymore for this perturbation. Can you find

what is the new attractor for this perturbation?

7. Analyse Circuits from the Tools scrolling menu can be used to verify that

the regulatory graph contains four circuits, among which three are func-

tional (i.e. have a non-empty functionality contexts). For each functional

circuit, one can verify its sign (depending on the rules) and its function-

ality context. As shown in the Figure 11, the positive circuit defined

by the cross inhibitions between p53 and Mdm2nuc is functional when

Mdm2cyt=DNAdam= 0. Indeed, the inhibition of Mdm2nuc by p53 is

not functional in the presence of Mdm2cyt or DNAdam.

8. For large networks, it might be useful to reduce the model before per-
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forming a simulation or other kind of dynamical analysis. Although our

application is of moderate size, let’s illustrate the use of GINsim model

reduction functionality. Selecting the Reduce model option in the Tools

scrolling menu launches the reduction interface. Select the component

Mdm2cyt for reduction, as shown in Figure 12. Hitting the Run button

generates a logical model encompassing only the three remaining compo-

nents. Note that Mdm2nuc is now the target of a dual interaction from

p53. The logical rule associated with Mdm2nuc has been modified to take

into account the former indirect effect of p53 through Mdm2cyt. However,

now that a reduction has been defined, you can select it when launching

a simulation or computing stable states, without generating the reduced

graph. Perform a complete asynchronous simulation and verify that the

number of states is now lower by a factor of two (12 states instead of 24)

compared to Figure 5.

5 Outlook

The logical formalism is particularly useful to model regulatory networks for

which precise quantitative information is barely available, or yet to have a first

glance of the dynamical properties of a complex model.

For this tutorial, we have considered a network of moderate size and we

have followed the different steps enabling the delineation of a consistent logical

model. Although relatively small, this model already displays relatively complex

dynamics, including several transient oscillatory patterns and a stable state. It
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further served as a reference to illustrate advanced functions, such as model

reduction or regulatory circuit analysis.

As mentioned in the introduction, various logical models for different cellular

processes have been proposed during the last decades. Many of these models are

available in the repository included along with GINsim on the dedicated website

(http://ginsim.org). The interested reader can thus download the model of his

choice and play with it, for example to reproduce some of the results reported

in the corresponding publication.

6 Notes

1. GINsim allows the user to export logical regulatory graphs as well as state

transition graphs towards various formats, facilitating the use of other

softwares:

• SBML-qual, the qualitative extension of the popular model exchange

format [20].

• MaBoSS, a C++ software for simulating continuous/discrete time

Markov processes, applied on a Boolean networks (https://maboss.

curie.fr/).

• BoolSim (http://www.vital-it.ch/software/genYsis/).

• GNA, a software for the piecewise linear modelling of regulatory net-

works (http://ibis.inrialpes.fr/article122.html).

• NuSMV, a symbolic model-checking tool (http://nusmv.fbk.eu/).
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• Integrated Net Analyzer (INA) supporting the analysis of Place/

Transition Nets (Petri Nets) and Coloured Petri nets (http://www2.

informatik.hu-berlin.de/~starke/ina.html).

• Snoopy, a tool to design and animate hierarchical graphs, among

others Petri nets (http://www-dssz.informatik.tu-cottbus.de/

DSSZ/Software/Snoopy.

• Graphviz, an open source graph visualization software offering main

graph layout programs (http://www.graphviz.org/).

• BioLayout Express 3D, a tool for the visualization and analysis of

biological networks (http://www.biolayout.org).

• Cytoscape, a popular open source software platform for visualizing

molecular interaction networks (http://www.cytoscape.org/).

• Scalable Vector Graphics (SVG) format, an XML standard for de-

scribing two-dimensional graphics (http://www.w3.org/Graphics/

SVG/).

2. In the non-Boolean case, a gene may have several distinct effects on an-

other gene, depending on its activity level. In this case, only one arc

is drawn, encompassing multiple interactions, each with its own thresh-

old. An interaction is then active when the level of the source is above

its threshold, and below that of the next interaction. Logical regulatory

graphs may encompass multi-arcs, composed of different interactions hav-

ing different effects. To each interaction, an interval specifying the range
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of the source levels for which the interaction occurs must be specified.

Intervals assigned to interactions with the same source and target must

obviously be disjoint. Moreover, a sign should be specified (positive, neg-

ative or dual) for each regulatory effect.

3. For each node g, each combination of incoming interactions defines a logi-

cal parameter. This includes the case where no interaction acts on g (when

every regulator value of g is below the first threshold of the arc pointing

towards g). The logical parameter related to this case is called the basal

level of gi, i.e. the level of gi in the absence of any specific activation.

Considering that many parameters are usually null, zero is the default

value in GINsim (i.e. a parameter that is not explicitly assigned takes

value zero).

4. Transitions between states of the state transition graphs amount to the

update of one (in the asynchronous case) or several (in the synchronous

case) components. In any case, the update (increase or decrease) of a

component is unitary (current value +1 or −1). Obviously, this remark

applies only for multi-valued components (for which the maximal level is

greater than 1).

5. Priority classes allow to refine the updating schemes applied to construct

the state transition graphs [12]. GINsim users can group components into

different classes and assign a priority rank to each of them. In case of

concurrent updating transitions (i.e. calls for level changes for several
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components in the same state), GINsim updates the gene(s) belonging to

the class with the highest ranking. For each priority class, the user can

further specify the desired updating assumption, which then determines

the treatment of concurrent transition calls inside that class. When several

classes have the same rank, concurrent transitions are treated under an

asynchronous assumption (no priority).

6. A regulatory circuit is defined as a sequence of interactions forming a

simple closed directed path. The sign of a circuit is given by the product of

the signs of its interactions. Consequently, a circuit is positive if it has an

even number of inhibitions, it is negative otherwise. R. Thomas proposed

that positive circuits are necessary to generate multistationarity, whereas

negative circuits are necessary to generate stable oscillations (see [27] and

references therein). External regulators might prevent the functioning of

a circuit imbedded in a more complex network. Reference [22] presents

a method to determine the functionality context of a circuit in terms of

constraints on the levels of its external regulator. A circuit functionality

context can be interpreted as the part of the state space where the circuit

is functional, i.e. generates the expected dynamical property [28].
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Tables

Table 1: Components and maximal levels for the p53-Mdm2 model.

Components Maximal levels
p53 2

Mdm2cyt 1
Mdm2nuc 1
DNAdam 1

Table 2: Interactions and corresponding activity ranges for the p53-
Mdm2 model.

Sources Targets Source activity ranges

p53
Mdm2cyt [2, 2]
Mdm2nuc [1, 2]
DNAdam [1, 2]

Mdm2cyt Mdm2nuc [1, 1]
Mdm2nuc p53 [1, 1]

DNAdam
DNAdam [1, 1]
Mdm2nuc [1, 1]

Table 3: Logical rules for the p53-Mdm2 model. This table lists the con-
ditions enabling the activation of each component (up to level one in the case of
a Boolean component, potentially up to higher levels for multilevel components,
as for p53 here). These conditions are defined in terms of Boolean expression
using the NOT, AND and OR Boolean operators (denoted by !, & and | in
GINsim, respectively).

Components Target levels Boolean rules
p53 2 !Mdm2nuc

Mdm2cyt 1 p53 : 2
Mdm2nuc 1 Mdm2cyt | (!p53 & !DNAdam)
DNAdam 1 DNAdam & !p53
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Figures

Figure 1: GINsim main window displaying p53-Mdm2 logical regula-
tory graph. The menu at the top displays five titles. These file scrolling menu
provides access to classical file management options, to an option for merging
the current graph with another one, as well as to facilities to export the regu-
latory towards various formats. The central area displays the regulatory graph,
while the lower panel contains two tabs: the Modelling Attributes tab (selected
here) and the Style tab, both in relation with to the selected graph component,
here p53. The Edit button on the top is selected and emphasized with a green
contour, enabling the edition of the attributes of the selected node, including
its id and name, its maximal level (Max, here set to 2), and also the insertion of
annotations in the form of free text (bottom right panel) or of links to relevant
database entries (bottom middle panel).

28



Figure 2: Regulatory arcs management in GINsim. To add an arc, the
corresponding arc button must be pushed (push twice to add multiple arcs in a
row), allowing the drawing of an arc between a source component and its target.
Once an arc has been defined, it can be further edit by selecting it along with
the Edition button. The sign of an interaction and the threshold(s) are defined
with the Modelling Attributes tab, as shown here for the positive arc from p53
onto Mdm2cyt. Note that this arc has been defined as positive and associated
with a threshold level 2, as shown in the bottom-left panel. (see also Note 2).
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Figure 3: Defining logical rules for regulatory components. This
screenshot shows the Modelling Attributes associated with the selected node
DNAdam. The maximal level is set to 1. After selecting Formulae with the
bottom-left scrolling menu, the user can define formulae by clicking on the little
arrows in the main bottom panel. The target value (here set to 1 per default)
can be changed in the case of a multilevel component. By clicking on the E
button, one can enter a formula, using literals (these should be exactly match
the IDs of components regulating the selected node, i.e. p53 or DNAdam in
the present case) and the Boolean operators !, & and |, denoting NOT, AND
and OR, respectively (following the usual priority rule; parenthesis can be used
to define complex formulae). Note that several rows can be used in association
with a single target values; these rows are then combined with OR operators.
Here, the formula DNAdam & !p53 associated with the target value 1 implies
that DNAdam will be maintained at a level 1 if already present, but only in the
absence of p53.

30



Figure 4: Launching of the construction of a state transition graph.
This panel is obtained when selecting Run simulation from the Tools scrolling
menu in GINsim main window. The default simulation settings are shown, i.e.
the construction of State Transition Graph using the asynchronous updating,
with no selected initial state (meaning that all states are considered in the simu-
lation). Hitting the Run button will generate the corresponding State transition
Graph in a new window (see Figure 5).
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Figure 5: Asynchronous state transition graph for the p53-Mdm2
model. Asynchronous state transition graph generated with the simulation
parameters shown in Figure 4, including the stable state (0010) laying at the
bottom. The selected state (0100) is shown in the bottom panel, with its suc-
cessors.
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Figure 6: Synchronous state transition graph for the p53-Mdm2 model.
The STG generated with the simulation parameters shown in Figure 4, but using
the synchronous updating scheme. The STG is composed of three non connected
subgraphs. On the left, we find back the resting stable state 0010, which can
be reached from 14 other states. On the right, we see that the synchronous
updating of our model further generates two two-states cyclic attractors, which
can be reached from three or two other states respectively. Solid and dotted
arrows denote single and multiple transitions, respectively.
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Figure 7: Strongly connected component graph. The graph of strongly
connected components for the complete asynchronous dynamics of the p53-
Mdm2 model is shown. It has been obtained by selecting the construction
of Strongly Connected Component Graph in the corresponding scrolling menu
when launching the simulation. The layout has been slightly manually improved.
The three states shown at the top (in green) have only outgoing arcs (i- means
that the corresponding states irreversibly traversed). The blue nodes correspond
to non trivial strongly components (ct stands for cyclic transient component;
the number 9 or 6 following the # denotes the number of states from the STG
grouped in the corresponding SCC). None of these two non trivial SCC corre-
sponds to attractors as one can escape them following one of the outdoing arcs.
The SCC ct#6 is selected and its composition is shown in the bottom panel.
The ∗ denotes all possible values for the corresponding components (here two
for Mdm2nuc: 0 and 1). This SCC thus contains six states, all with DNAdam
OFF. The unique attractor (a stable state) is shown in red at the bottom (ss-
stands for stable state), which corresponds to the same resting stable state as
shown in Figure 5.
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Figure 8: Hierarchical transition graph. The hierarchical transition graph
for the complete asynchronous dynamics of the p53-Mdm2 model is shown. It
has been obtained by selecting the construction of Hierarchical Transition Graph
in the corresponding scrolling menu when launching the simulation. The layout
has been slightly manually improved. The green node at the top has been
selected and contains three states shown in the bottom panel. They can each
lead to the cyclic component ct#9 or to a set of four transient state denoted
by i#4. The blue nodes correspond to the two non trivial strongly components,
and the the unique stable state is shown in red at the bottom, as in Figure 7.
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Figure 9: Stable state determination. This window pops up upon selection
of Compute Stable States with the Tools scrolling menu. After hitting the Run
button, GINsim returns all stable states using an efficient algorithm. In the
wild type case, we obtain a unique stable state (0010) as shown (yellow and
gray cells denote levels 0 and 1, respectively).

Figure 10: Perturbation specification. This window can be activated from
the simulation launching window (Figure 4) and various other windows, includ-
ing the Compute Stable States window. It enables the specification of model
perturbations or mutants. The figure illustrates the specification of a simple
blockade of the level of DNAdam to 1.
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Figure 11: Circuit analysis for the p53-Mdm2 logical model. Among
the four circuits found in the regulatory graph, three are functional: one is
negative, while the other two are positive. The selected circuit (involving p53
and Mdm2nuc) is functional and positive when both Mdm2cyt and DNAdam
are absent.
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Figure 12: Model reduction. This window pops up following the selection of
Reduce model from the Tools scrolling menu in the main GINsim window. Here,
only Mdm2cyt has been selected for reduction. By hitting the Run Button, a
reduced model is generated, provided that no self-regulated node is affected.
Alternatively, one can close the window after the definition of one or several
reduction(s) (using the + button on the left) and select a predefined reduction
directly when performing simulations or other kinds of analyses.
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